NSERC CRSNG

Sapolnach Prompiengchai¹, Zhemeng Wu¹, Rushil Dave¹, Haoyu Zhang¹, Rutsuko Ito^{1*}, Andy C.H. Lee^{1,2*} ¹Department of Psychology (Scarborough), University of Toronto, Toronto, Canada. ²Rotman Research Institute, Baycrest Centre, Toronto, Canada. *Equal contribution.

Introduction

- Our knowledge of human temporal memory has been informed significantly by rodent work (e.g., hippocampal "time cells"¹⁻²).
- Limited research, however, has directly compared the two species with respect to behaviour.
- We developed a cross species temporal sequence learning task based on a paradigm that recruits the human hippocampus³.
- We propose a novel computational learning model that captures learning dynamics and interindividual variability in humans and rodents during the acquisition of temporal sequence memory.

Participants

16 Long Evans rats (male = 8, female = 8), age = 10 weeks+. 38 Human participants (male = 16, female = 22), age = 18 - 45.

Why do we need a new learning model?

Computational mechanisms of temporal duration sequence learning and memory in humans and rodents

Sigmoid model that accounts for only 1 sequence CANNOT learning strategy.

- outcome)

