

Introduction

- Solanum spp. employ various strategies to defend against herbivory, including structural defenses (trichomes) and specialized chemical compounds (terpenes)¹.
- Cultivated tomatoes, S. lycopersicum, have been bred for agronomic traits, reducing diversity within their defense mechanisms, making it more susceptible to insect herbivores.
- S. habrochaities, native to Peru, have individuals (accessions) across locations with different terpene content².
- Little is known on the effect of wild tomato, S. habrochaites, on chewing herbivores like Colorado Potato Beetle (CPB).

Objective: Screen wild tomato effect on CPB performance, and larvae preference against wild and cultivated tomato plants.

Methods: Screen wild tomato resistance against CPB herbivory

Wild tomatoes exhibit natural resistance to insect herbivory

Sundas Rehman¹, Andreea Bosorogan^{1,2}, Eliana Gonzales-Vigil^{1,2}

¹ Department of Biological Sciences, University of Toronto Scarborough, Canada, ² Department of Cell & Systems Biology, University of Toronto, Canada

Map displaying the general location of genetically diverse *S. habrochaites*, differentiated by their predominant terpenes (i.e., Elemene, Zingiberene, β -phellandrene)².

Tissue consumption measured

Conclusion

- resistant tomatoes.

Future Directions: Understand what mechanisms or metabolites make CPB more attracted or repelled to tomatoes, via isolating and identifying the predominate terpenes from each accession.

References & Acknowledgments

We would like to thank Dr. Helen Tsai for providing us with the CPB eggs.

¹ Bosorogan, A. et al. Tomato defences modulate not only insect performance but also their gut microbial composition. Sci Rep 13, 18139 (2023). ² Gonzales-Vigil, E. *et al.* Evolution of TPS20-related terpene synthases influences chemical diversity in the glandular trichomes of the wild tomato relative Solanum habrochaites. The Plant Journal 71, 921–935 (2012).

• Choice assays suggest plant defenses as potential drivers of resistance: • S. habrochaites accessions have resistance mechanisms that negatively impact insect herbivory by reducing weight and survival chances of CPB larvae.

• **Resistant** accessions show less damage when provided at the same time as cultivated tomato. • S. habrochaites is more resistant to CPB compared to cultivated S. lycopersicum and could be used to develop more

