

UNIVERSITY OF TORONTO

S C A R B O R O U G H ^aDepartment of Psychology at Scarborough, University of Toronto, Toronto, ON, Canada; ^bDepartment of Cell and Systems Biology, University of Toronto, Ontario, Canada; ^bDepartment of Cell and Systems Biology, University of Toronto, ON, Canada; ^bDepartment of Cell and Systems Biology, University of Toronto, ON, Canada; ^bDepartment of Cell and Systems Biology, University of Toronto, ON, Canada; ^bDepartment of Cell and Systems Biology, University of Toronto, ON, Canada; ^bDepartment of Cell and Systems Biology, University of Toronto, ON, Canada; ^bDepartment of Cell and Systems Biology, University of Toronto, ON, Canada; ^bDepartment of Cell and Systems Biology, University of Toronto, ON, Canada; ^bDepartment of Cell and Systems Biology, University of Toronto, ON, Canada; ^bDepartment of Cell and Systems Biology, University of Toronto, ON, Canada; ^bDepartment of Cell and Systems Biology, University of Toronto, ON, Canada; ^bDepartment of Cell and Systems Biology, University of Toronto, ON, Canada; ^bDepartment of Cell and Systems Biology, University of Toronto, ON, Canada; ^bDepartment of Cell and Systems Biology, University of Toronto, ON, Canada; ^bDepartment of Cell and Systems Biology, University of Toronto, ON, Canada; ^bDepartment of Cell and Systems Biology, University of Toronto, ON, Canada; ^bDepartment of Cell and Systems Biology, University of Toronto, ON, Canada; ^bDepartment of Cell and Systems Biology, University of Toronto, ON, Canada; ^bDepartment of Cell and Systems Biology, University of Toronto, ON, Canada; ^bDepartment of Cell and Systems Biology, University of Toronto, ON, Canada; ^bDepartment of Cell and Systems Biology, University of Toronto, ON, Canada; ^bDepartment of Cell and Systems Biology, University of Toronto, Canada; ^bDepartment of Cell and Systems Biology, University of Toronto, Canada; ^bDepartment of Cell and Systems Biology, University of Toronto, Canada; ^bDepartment of Cell and Systems Biology, University ON, Canada; ^bDepartment of Cell and S

- **Research Design:**

- session (compensated 2.0 SONA credits)

Practice Block	Block 1	Block 2
(12 Trials)	(60 Trials)	(60 Trials)

Investigating the Factors that Influence Approach-Avoidance Conflict **Decision Making in Older Adults** Erin Butler^a, Willem Le Duc, B.A.^a, Kiah Spencer^a, Rutsuko Ito, Ph.D.^{a,b}, & Andy C. H. Lee, Ph.D^{a,c}

Raw Score (SD)	Percentile (%)	Qualitative Description
27.8 (2.10)	NA	Pass
18 (7.69)	50%	Average
38.7 (6.80)	95%	Superior
24.5 (5.66)	75%	Average
20.9 (1.96)	17-25%	Low Average
35.7 (8.92)	75%	Average
11.4 (2.24)	84%	High Average
38.8 (1.09)	>75%	Average
44.6 (7.89)	81%	High Average
20.2 (5.50)	81%	High Average
33.5 (4.74)	70%	Average
34.6 (2.01)	>16%	Average
20.5 (4.28)	88%	High Average
21.9 (3.09)	95%	Superior
20.9 (1.10)	66%	Average
27.9 (6.05)	75%	Average
9.9 (3.00)	37%	Average
15.8 (2.94)	37%	Average
19.5 (2.12)	95%	Superior
33.6 (4.07)	91%	High Average
11.1 (1.27)	37%	Average
10 (0.00)	100%	Average
19.3 (1.00)	21%	Low Average
9.3 (1.12)	47.90%	Average

Health Research

Experiment 2-Decision Making Results

Significant interaction effect of rate of approach and trial condition (both groups approach more during positive condition than conflict condition, and more during conflict condition than negative

No significant main effect of age on rate of approach during object version of the decision-making

Significant interaction effect of rate of approach and trial condition (both groups approach more during positive condition than conflict condition, and more during conflict condition than negative

No significant main effect of age on rate of approach during object version of the decision-making

Discussion and Conclusions

Healthy aging does not result in increased approach decision making in conflict YA have higher scores than OA on tests of anxiety, positive and negative urgency, and sensation seeking

Despite the finding that healthy aging does not have an effect rate of approach during conflict decision making, it may be useful to include an unhealthy aging sample (e.g., Alzheimer's disease)

Small sample size (research is ongoing)

. Experimental studies of conflict. In J.M. Hunt (Ed.), *Personality and the Behavior Disorders*, pp. 431-465. Ronald Press, Oxford ²Ito, R., & Lee, A. C. H. (2016). The role of the hippocampus in approach-avoidance conflict decision making: evidence from rodent and human studies. *Behavioural Brain* Research, 313, 345-357, http://dx.doi.org/10.1016/j.bbr.2016.07.03 ³ Schumacher, A., Vlassov, E., & Ito, R. (2015). The ventral hippocampus, but not the dorsal hippocampus is critical for learned approach-avoidance decision making

⁴Schumacher, A., Villaruel, F. R., Ussling, A., Riaz, S., Lee, A. C. H., & Ito, R. (2018). Ventral hippocampal ca1 and ca3 differentially mediate learned approach-avoidance conflict processing. Current Biology, 28(8), 1318-1324. https://doi.org/10.1016/j.cub.2018.03.012 ⁵ Burger, C. (2010). Region-specific genetic alterations in the aging hippocampus: Implications for cognitive aging. *Frontiers in Aging Neuroscience, 2*, 140.

⁶ Chu, S., Thavabalasingam, S., Hamel, L., Aashat, S., Tay, J., Ito, R., & Lee, A. C. H. (2019). Exploring the interaction between approach-avoidance conflict and memory processing. *Memory*, 28(1), 141-156. <u>https://doi.org/10.1080/09658211.2019.1696827</u>