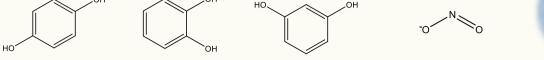
# Simultaneous detection of hazardous chemicals using a novel nanocomposite system

#### **Nafisa Mahbub**<sup>1</sup>, Samiha Sultana<sup>1, 2</sup>, Meissam Noroozifar<sup>2</sup>, Kagan Kerman<sup>1, 2</sup>

(1) Department of Physical and Environmental Sciences, (2) Department of Chemistry, University of Toronto Scarborough, Toronto, ON Canada




nafisa.mahbub@mail.utoronto.ca

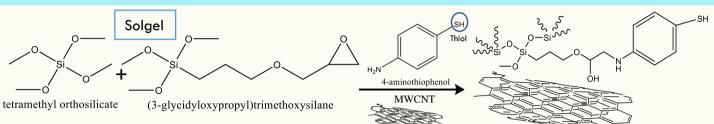
## BACKGROUND

Benzenediol (BDO) isomers  $(C_6O_2H_6)$  of:

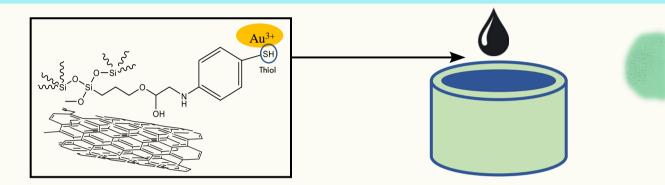
hydroquinone (HQ), catechol (CC) and resorcinol (RS) and nitrites (NO<sub>2</sub>-)






Acts as environmental pollutants and precursors to human disease

Lack of methods for simultaneous detection of BDOs and NO2<sup>-</sup> at reduced costs, low time demands, high sensitivity, and high selectivity


> Can this electrochemical sensor effectively and simultaneously detect **BDOs and NO** $_2$ <sup>-</sup>?

# METHODS

#### (1) Synthesized of 4-aminothiophenol in sol-gel and multiwall carbon nanotubes (MWCNTs).



#### (2) Added gold cations to modifier and drop casted onto glassy carbon electrode (GCE)



#### (3) Converted gold cations on modifier into gold nanoparticles for final structure



(4) Electrochemical methods of differential pulse voltammetry (DPV)

### RESULTS

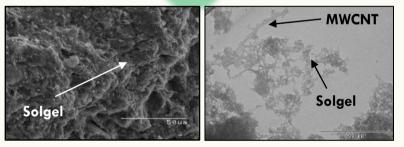



Figure 1. Scanning and transfer electron microscopy of the modifier.

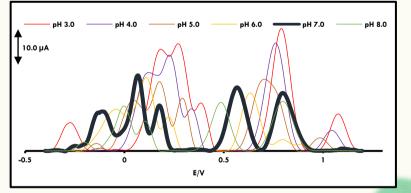
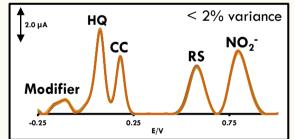
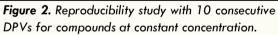





Figure 3. pH study with DPVs in varying pH.

| Analyte           | Limit of<br>Detection<br>(µM) | Recovery<br>Rate in Waste<br>Water (%) | Recovery Rate<br>in Hair Dye<br>(%) |
|-------------------|-------------------------------|----------------------------------------|-------------------------------------|
| HQ                | 0.016                         | 102                                    | 88                                  |
| сс                | 0.071                         | 101                                    | 95                                  |
| RS                | 0.062                         | 103                                    | 110                                 |
| NO <sub>2</sub> - | 0.166                         | 104                                    | 108                                 |

Figure 5. Calculated limits of detection in control and real samples.





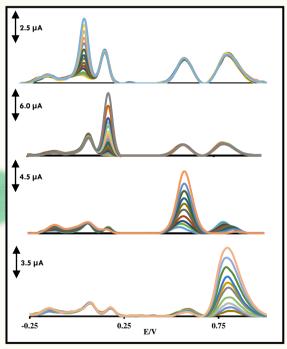



Figure 4. Interference study with DPVs at pH 7 under varying concentration of one analyte and constant concentration of others.

### DISCUSSION

The novel sensor presents as an effective detection system for benzenediol isomers and nitrites, which pose as a major threat to environmental sustainability and human health.

- Simple, cost-effective method of preparation and maintenance
- Strong analytical performance with a wider linear range, low detection limits, high selectivity and significant stability and reproducibility
- Promising recovery values for determination of compounds in real samples
- Foundation for future work in constructing detection systems for harmful chemicals



#### References

- Kahru, A.; Maloverjan, A.; Sillak, H.; Pöllumaa, L. The Toxicity and Fate of Phenolic Pollutants in the Contaminated Soils Associated with the Oil-Shale Industry. Environmental Science and Pollution Research 2002, 9 (1), 27–33. https://doi.org/10.1007/BF02987422. /doi.org/10.1007/BF02987422.
- vizishad, M.; Dalvand, A.; Mahvi, A.; Goodarzi, F. A Review of Adverse Effects and Benefits of Nitrate and Nitrite in Drinking Water and Food on Human Health. Health Scope 2017, In Press
- Suresh, S.; Srivastava, V. C.; Mishra, I. M. Adsorption of Catechol, Resorcinol, Hydroquinone, and Their Derivatives: A Review. International Journal of Energy and Environmental Engineering 2012, 3 (1), 32.
- McGregor, D. Hydroquinone: An Evaluation of the Human Risks from Its Carcinogenic and Mutagenic Properties. null 2007, 37 (10), 887–914. <u>https://doi.org/10.1080/10408440701638970</u> Miura, T.; Muraoka, S.; Fujimoto, Y.; Zhao, K. DNA Damage Induced by Catechol Derivatives. Chem Biol Interact 2000, 126 (2), 125–136. <u>https://doi.org/10.1016/s0009-2797(00)00156-3</u>. Lofrano, G.; Rizzo, L.; Grassi, M.; Belgiorno, V. Advanced Oxidation of Catechol: A Comparison among Photocatalysis, Fenton and Photo-Fenton Processes. Desalination 2009, 249 (2), 878–883.
- Toxicology and Carcinogenesis Studies of Resorcinol (CAS No. 108-46-3) in F344 Rats and B6C3F1 Mice (Gavage Studies). Natl Toxicol Program Tech Rep Ser 1992, 403, 1–234.
- 9. 10. rtph.2002.1585.
- Lynch, B. S.; Delzell, E. S.; Bechtel, D. H. Toxicology Review and Risk Assessment of Resorcinol: Thyroid Effects. Regul Toxicol Pharmacol 2002, 36 (2), 198–210. ht Grosse, Y.; Baan, R.; Straif, K.; Secretan, B.; Ghissassi, F. E.; Cogliano, V. Carcinogenicity of Nitrate, Nitrite, and Cyanobacterial Peptide Toxins. The Lancet Oncol The Lancet Oncology **2006**, 7 (8), 628–629.
- Hu, F.; Chen, S.; Wang, C.; Yuan, R.; Yuan, D.; Wang, C. Study on the Application of Reduced Graphene Oxide and Multiwall Carbon Nanotubes Hybrid Materials for Simultaneous Determination of Catechol, Hydroquinone, p-Cresol and Nitrite. Analytica Chimica Acta 2012, 724, 40–46. https://doi.org/10.1016/j.aca.2012.02.037 11.
- Wang, C.; Yuan, R.; Chai, Y.; Hu, F. Simultaneous Determination of Hydroquinone, Catechol, Resorcinol and Nitrite Using Gold Nanoparticles Loaded on Poly-3-Amino-5-Mercapto-1,2,4-Triazole-MWNTs Film Modified Electrode. Anal. Methods 2012, 4 (6), 1626–1628. https://doi.org/10.1039/C2AY25097G 12.
- Tian, F.; Li, H.; Li, M.; Li, C.; Lei, Y.; Yang, B. Synthesis of One-Dimensional Poly(3,4-Ethylenedioxythiophene)-Graphene Composites for the Simultaneous Detection of Hydroquinone, Catechol, Resorcinol, and Nitrite. Synthetic Metals 2017, 226, 148–156. https://doi.org/10.1016/j.synthmet.2017.02.016. 13.
- Sabbaghi, N.; Noroozifar, M. Nanoraspberry-like Copper/ Reduced Graphene Oxide as New Modifier for Simultaneous Determination of Benzenediols Isomers and Nitrite. Analytica Chimica Acta 2018, 1056. 14.

